IGCSE Physics Equations

Xingzhi Lu

May 2024

1 Measurements and units

	Prefix	Meaning
	G (giga)	10^{9}
	M (mega)	10^{6}
	k (kilo)	10^{3}
:	d (deci)	10^{-1}
	c (centi)	10^{-2}
	m (milli)	10^{-3}
	μ (micro)	10^{-6}
	n (nano)	10^{-9}

Prefixes:

Density: $\rho = \frac{m}{v}$ / density = $\frac{\text{mass}}{\text{volume}}$

2 Forces and motion

 $\mathbf{Speed} \text{ / } \mathbf{velocity:} \text{ } v = \frac{d}{t} \text{ / } \mathbf{speed} = \frac{\mathbf{distance}}{\mathbf{time}}, \text{ } \mathbf{velocity} = \frac{\mathbf{displacement}}{\mathbf{time}}$

Acceleration: $a = \frac{v - u}{t}$ / acceleration = $\frac{\text{change in velocity}}{\text{time}}$

Weight: W = mg / weight = mass × g

Resultant force: $F = ma / \text{resultant force} = \text{mass} \times \text{acceleration}$

Resultant force by momentum: $F = \frac{mv - mu}{t}$ / resultant force = $\frac{\text{change in momentum}}{\text{time}}$

Elastic collision: $m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$

Stick together after collision: $m_1u_1 + m_2u_2 = (m_1 + m_2)v_{1+2}$

Centripetal force (do not need for exam): $F = \frac{mv^2}{r}$

3 Forces and pressure

Moment: moment = force \times perpendicular distance from pivot

Spring constant: F = kx / load = spring constant × extension

Pressure at a depth in liquid: $P = \rho g h$ / pressure at a depth = density of liquid × g × depth

Boyle's law: $p_1V_1 = p_2V_2$

4 Forces and energy

Work: W = fd / work done = force × distance

GPE: GPE = mgh / gravitational potential energy = mass $\times g \times$ height

KE: $E_k = \frac{1}{2} m v^2$ / kinetic energy = $\frac{1}{2} \times \text{mass} \times \text{speed}^2$

 $\textbf{Efficiency:} \ \ \text{efficiency} = \frac{\text{useful work done}}{\text{total energy input}} = \frac{\text{useful energy output}}{\text{total energy input}} = \frac{\text{useful power output}}{\text{total power input}}$

 $\textbf{Power:}\ \ P = \frac{E}{t} \ / \ \text{speed} = \frac{\text{energy transferred}}{\text{time}} = \frac{\text{work done}}{\text{time}}$

5 Thermal effects

Kelvin temperature: Kelvin temperature = Celsius temperature +273

Absolute zero: $0 \text{ K} / -273^{\circ}\text{C}$

Pressure law: $\frac{P_1}{T_1} = \frac{P_2}{T_2}$

Charles' law: $\frac{V_1}{T_1} = \frac{V_2}{T_2}$

* Temperatures should be in Kelvin (SI unit)

Specific heat capacity: $\triangle E = mc\triangle T$ / energy transferred = mass × specific heat capacity × temperature change

Specific heat capacity of water: 4200 J/kg°C

Latent heat unit: J/kg, KJ/kg, etc.

6 Waves and sounds

Wave speed: $v = f\lambda$ / wave speed = frequency × wavelength

Speed of sound: gas $\approx 340 \text{ m/s}$, liquid $\approx 1500 \text{ m/s}$, solid $\approx 5000 \text{ m/s}$

7 Rays and waves

Refractive index: $n_{\text{substance}} = \frac{c_{\text{vacuum}}}{c_{\text{substance}}} / \text{ refractive index} = \frac{\text{speed of light in sound}}{\text{speed of light in substance}}$

Snell's law: $n_1 \sin \theta_1 = n_2 \sin \theta_2$

To faster medium: $\frac{\sin i}{\sin r} = \frac{1}{n}$

To slower medium: $\frac{\sin i}{\sin r} = n$

Critical angle: $\sin c = \frac{1}{n}$

Speed of light: 3×10^8 m/s

8 Electricity

Charge of 1 electron: 1.6×10^{-19} C (one Coulomb is about the charge of 6×10^{18} electrons)

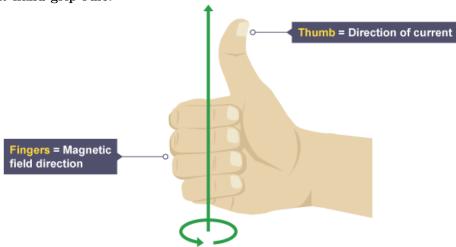
2

Current: $I = \frac{Q}{t}$ / current = $\frac{\text{charge}}{\text{time}}$

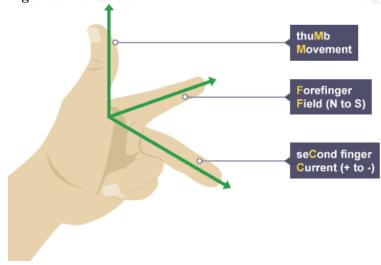
Voltage: $V = \frac{W}{Q}$ / voltage = $\frac{\text{energy transferred}}{\text{charge}}$

Ohm's law: V = IR / voltage = current × resistance

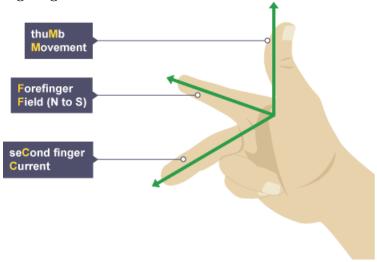
Resistance of a wire: $R = \frac{\rho L}{A}$ / resistance = $\frac{\text{resistivity} \times \text{length}}{\text{cross sectional area}}$


Combined resistances of resistors in series: $R=R_1+R_2\ /\ R=R_1+R_2+R_3$

Combined resistances of resistors in parallel: $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} / \frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$


Power: $P = VI = I^2R = \frac{V^2}{R}$

9 Magnets and currents


Right hand grip rule:

Fleming's left hand rule:

Fleming's right hand rule:

 $\textbf{Transformer voltage:} \ \frac{V_p}{V_s} = \frac{N_p}{N_s} \ / \ \frac{\text{input voltage}}{\text{output voltage}} = \frac{\text{number of turns on primary coil}}{\text{number of turns on secondary coil}}$

Transformer current: $V_p \times I_p = V_s \times I_s$

Power lost in cable: $P = I^2 R$

10 Atoms and radioactivity

Alpha decay: ${}^A_ZX o {}^{A-2}_{Z-4}Y + {}^4_2\alpha$

Beta decay: ${}_Z^AY \rightarrow {}_{Z+1}^AY + {}_{-1}^0\beta$

Gamma decay: ${}^A_ZX \rightarrow {}^A_ZY + {}^0_0\gamma$

11 The Earth in space

Gravitational force from sun: $F \propto \frac{1}{r^2}$

Distance of 1 light year: $9.5 \times 10^15 \mathrm{\ m}\ /\ 9.5 \times 10^12 \mathrm{\ km}$

Hubble constant: $H_0 = \frac{v}{d} \approx 2.2 \times 10^{-18} \text{ s}^{-1}$

Age of universe: $t=\frac{d}{v}=\frac{1}{H_0}\approx 4.55\times 10^{17}~\mathrm{s}\approx 14.4$ billion years